" Biomedical Teaching Organisation

BIOMEDICAL SCIENCES 2

“Inferring from data”
WORKSHOP HANDBOOK

Name:




Key contact:
Dr Crispin Jordan

For University of Edinburgh students only:

If you require this document or any of the internal University Of
Edinburgh online resources mentioned in this document in an
alternative format please contact bms2@ed.ac.uk.




Contents

1. WORKSHOP DESCRIPTION........oocosirirereseesssssssssssss s ssssssssssssssesssesssssssssssssssssssssssssssssees 4
2. STAGE 1: Formulating a hypothesis..........coesessesesssssens 5
3. STAGE 2: Designing an eXperiment..........s s 6
4. STAGE 3: Collect data for your eXperiment...........n: 7
5. STAGE 4: Analyzing your data:...........ssssessssssssssssssssssssssssssss 10
6. STAGE 6: Interpreting your results: ... 20
7. SUMMARY OF COMMANDS .....oorensssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssans 21



1. WORKSHOP DESCRIPTION

1.1 Workshop aims:

In this workshop session you will practice key stages the scientific method. You will
learn how to formulate a hypothesis, how we might go about collecting data for an
experiment, and how to describe and analyze the data.

1.2 Workshop Learning outcomes:

By the end of the workshop, you should be able to

* Understand the difference between a Null and Alternative hypothesis.

* Differentiate between a ‘sample’ and a ‘population’.

* Appreciate the concept of ‘statistical significance’ but also note controversy that
surrounds this concept.

* Explain how statistics uses a ‘Null Distribution’ to determine whether a result is
‘significant’.

* Conduct a Randomization Test to test whether two means differ significantly
from one another.

1.3 Workshop structure:

In this workshop, you will address the question,

“Does the average date of observing the first leaf produced (‘first
leafing’) by beech trees differ between Northern vs. Southern
populations in the UK?”

In doing so, you will work though many of the steps of the scientific process: you
consider the design of an ‘experiment’, and describe and statistically analyze
relevant data. Hence, this workshop is organized according to stages of the
Scientific Method.

For each stage of the scientific method, we’ll discuss underlying ideas associated
with this stage. These fundamental concepts are presented in Boxes, whereas the
‘instructions’ are not. These concepts are introduced as they arise in your work; so
this document is not just a simple recipe for conducting the experiment. We
strongly advise you to read and gain an understanding of the concepts in the
boxes, as putting these concepts into practice is the main point of this
workshop.

This document synthesizes much content, and we do not expect you to digest and
understand it all fully in this practical. We will re-visit this material in later lectures
in this course. Hence, this document partly serves as a text for you to later refer back
to when studying the associated subject matter. This partly explains why this
document is long.



2. STAGE 1: Formulating a hypothesis

Box 1: Null versus Alternative hypotheses

Before beginning any scientific study, it is crucial to develop a hypothesis, for two
reasons. The first is practical: if you do not have a hypothesis in mind, you’ll likely
not collect data in an effective manner and you will waste your time. The second is
more fundamental: all statistical tests are based on testing a hypothesis. So, to
meaningfully conduct a statistically test, you need a hypothesis.

Developing a hypothesis is often the most difficult stage of the scientific process. Itis
easy to develop an unhelpful hypothesis, but studies that truly advance science have
great ideas/hypotheses.

A Hypothesis is an explanation for your data; two types of hypothesis exist.

A Null hypothesis is one where we propose that whatever factor we wish to study
has no effect on our data. For example, we might propose the Null Hypothesis that
the day of the week does not affect the probability that a baby is born. In classical
statistical approaches we use data to determine whether we’re justified in rejecting
the Null hypothesis. (The meaning of this idea will become clearer later in the
workshop.)

An Alternative hypothesis is the opposite of a Null hypothesis: it holds that the
factor you're studying (Latitude (North vs. South), in our case) does affect your data
(date of first leaf observed, in our case). If you conclude that your Null hypothesis is
wrong, you accept your Alternate hypothesis. Note that, in practice, scientists
usually formulate the Alternative hypothesis in their research (e.g., babies are less
likely to be born on weekends than on weekdays: the day of the week affects the
probability that a baby is born); however, it is the Null hypothesis that classical
statistical approaches test, which is why we mentioned the Null hypothesis first.

2.1) Hypothesis. Following the discussion in Box 1, what would the appropriate
Null hypothesis be when comparing the average date at which a beech tree’s first
leaf is observed between Northern vs. Southern populations in the UK?

Null hypothesis:

Alternative Hypothesis:




3. STAGE 2: Designing an experiment

Box 2: Who, exactly, do you wish to learn about? Populations versus Samples

Whether or not you require statistics to answer a question depends on what you
wish to learn. For example, if you wished to know the difference between the
average date at which the first leaf is observed on beech trees between one garden in
Scotland and one garden in England, this is a trivial question to answer definitively:
you would simply measure the date at which the first leaf is observed for all beech
trees in the two gardens (presumably the number of beech trees is small enough to
do this easily), calculate the average date for the two gardens, and compare them
(ignoring measurement error).

However, in most cases, we are not interested in studying such small groups.
Typically, we are interested in the qualities of, say, an entire species (like humans or
beech trees). In this case, it is impractical to study all humans / trees; instead, we
must study a sub-set of individuals, and we refer to this subset as the ‘Sample’. We
then use the sample to make inferences about the larger group we’re interested in,
which is the ‘Population’. We use statistics to make those inferences about the
larger population from the sample.

To illustrate, consider the trivial example above, comparing date of observed first
leaf between two gardens. In this case, the individuals in two gardens comprised the
entire population. On the other hand, the gardens could be viewed as two samples if
we wished to use it to study some larger population (see Box 3 for more thoughts on
this).

In this workshop we will analyze data collected by ‘citizen scientists’. Citizen
scientists are people who make observations about nature and then share them with
a group that organizes the data. For example, citizen scientists might note the day of
the year at which they first notice a species of butterfly or bird. With many citizen
scientists, the resulting datasets can be massive. This workshop uses data collected
by citizen scientists who noted the date at which they noticed the first leaf on beech
trees; we refer to this as ‘leaf date’ (Julian days). The citizen scientist reported the
year, species, and location (e.g., Latitude) of their observations. I obtained the data
for this workshop form here: https://datashare.ed.ac.uk/handle/10283/2332. We
will use data from the most recent year available (2014) and for beech trees (one of
my favourite species). The original dataset was very large (1000’s of observations).
To create the smaller dataset for our analyses, | determined the average latitude of
the observations in the dataset and then labeled all observations below this latitude,
South, and all observations greater than average, North. I then used R to randomly
selected 100 observations from the North and 100 from the South. Hence, our
dataset included 200 observations of the (Julian) date of observing the first leaf (leaf
date) on a Beech tree (see column, ‘day.of.obs’)

3.1) Sample. The trees in our dataset serve as the sample to test our hypothesis.
What population do you wish to make inferences about?




Answer:

4. STAGE 3: ‘Collect’ data for your experiment

4.1) Open RStudio and create an RStudio Project.

a) Open RStudio on your computer (e.g., to do so on a PC, type ‘RStudio’ in the
search panel; when RStudio appears in a list, click upon the icon).

b) Use the techniques you learned in the first ‘R-Session’ to create a project
for your work today; provide it with a sensible name (e.g.,
PracticalRandomization).

c) Again, using the techniques you learned in the first R-Session, save your
script with a name of your choice.

d) Drag the file, beechV2.csv into the RStudio project folder you just created.

Within RStudio, you should now see the dataset’s filename (beechV2.csv) listed in
the ‘Files’ panel.

4.2) Import the dataset: We will now import the dataset into RStudio:
a) Begin by typing this generic read.table() command into your script file:
data <- read.table("beechV2.csv ", header=TRUE, sep=",

How does this command work? The function read.table() allows RStudio
to import data that are stored in a table-like format. In the generic form,
above, we provide the function with two pieces of information:

* The option ‘header=TRUE’; this tells RStudio that the first line of the
dataset holds the names of the columns.

* The option, sep=",’ tells RStudio that, within rows, the file has a
comma between datapoints. (This tells RStudio how to read the file.)

NOTE also that we chose to save the data in an object called, ‘data’ [but
this object name is arbitrary].

b) Now, submit the command (highlight the code and press ‘run’).

c) Look at the data you imported, by typing (and submitting) the object
name of the dataframe (e.g., ‘data’, in the example, above).

d) Ifinstructions in (a-c) failed to import the data, try the following:

i) Left-click on the name of your datafile (beechV2.csv)in the Files
panel; you should see the option “Import Dataset”. Select, “Import
Dataset”.

ii) A new window will appear. At the top, you will see the ‘path’ to the
dataset and the file’s name [in our example here, we've called the



dataset testdata(1).csv]. Copy this path and file name (i.e.,
Control-c).

[ ——m
Import Text Data
File/Url:
~/Win7/Desktop/BMS2_Practical/testdata (1).csv Update

Data Preview:

iii) Paste (i.e., Control-v) this path and file name inside the inverted
commas of the generic command you typed in your script file. For
this example, our code looked like this:

data <- read.table("~/Win7/Desktop/BMS2_Practical/testdata(1).csv",header=TRUE,sep=",")

The code, ~/Win7/Desktop/BMS2_Practical/, is called the ‘path’ to your
dataset; it tells RStudio where to look for your file (in Win7, on the
Desktop, in an RStudio Project folder called, in this case BMS2_Practical).
Note that that the name of the data file in the example above,
testdata(1).csv, differs from the name of our file, beechV2.csv; i.e., to
import our dataset, please ensure you use the file name, beechV2.csv.

Submit the read.table() command and look at the imported data (i.e.,
repeat steps b & ¢, above, if they previously failed to display the data)

NOTE: You may also import your data by using the Import Dataset option we’d used
to identify the file’s path. However, this approach can be a bit messier, so it is not
explained here.

4.3) Describe the data. Because the data will not be sorted with respect to
North/South, we will organize the data before we describe it. We will use the
function, order(), to sort our data by North/South, and we’ll place the sorted data
into a new dataframe; North/South data are in the column, ‘North.South.UK’. For
example, if you called your unsorted dataframe, ‘data’, we can create a new, sorted
dataframe, ‘data.ordered’, with the following command:

data.ordered <- data[order(data$North.South.UK),]

How does this command work? Note that the order() function is placed where the X
is, here: data[X,]. Recall that the square brackets of a dataframe allow us to specify
rows and columns within it; the fact that the order() function lies to the left of the
comma in data[,] means that we’re ordering (i.e., sorting) the rows of your
dataframe. Within order(), we specified ‘data$ North.South.UK’: this indicates that
we wish to order the data by information in the column named, North.South.UK.
(Note it is also possible to sort by more than one column; see R’s Help for
information.) Finally, we created a new object, data.ordered, to hold the newly
sorted dataframe.

a) Find the mean leaf date (day.of.obs) in North and South (UK) beech
trees. Scroll through the sorted dataframe to find which rows contain data
from North versus South. (Note that the ‘row numbers’ on the left will not be



in order.) Now, calculate the mean leaf date (day.of.obs) for beech trees in
the North. You can do this by using the function mean() for the appropriate
rows and column of your sorted dataset. For example, if day.of.obs for North
data were in the fifth column on rows 1 to 4, you could use the following to
determine the mean of those 4 values:

mean(data.ordered[1:4,5)]

[NOTE; the above command is an example; what command is appropriate for
your data?]

Calculated mean leaf date for North UK:

Now, use the same approach to calculate the mean date of first leaf for beech
trees in South UK.

Calculated mean leaf date for South UK:

And, to be complete, calculate the date of first leaf for Northern and Southern
populations, together:

Overall mean leaf date (day.of.obs):

b) Calculate the difference between the mean North and South leaf dates: mean
North leaf date - mean South leaf date. You will use this value in a
statistical test, below.

Calculated mean North leaf date - mean South leaf date:

c) Now, plot two histograms, one of day.of.obs for North trees and and one for
South trees, using the techniques you learned in the self-study Session 4.

a. Based on these histograms, do you think that mean leaf date differs
between North vs. South??
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b. Do the means that you calculated for each region (North / South) seem
sensible given your plots?

c. What is the shape of each distribution? For example, are they
symmetrical? Describe them in words and sketch them here:

d. Are there any values of ‘day.of.obs’ that seem suspicious? For
example, a day.of.obs that is negative, or greater than 3657 You should
always check whether unusual data points are real, or are the result of
typos when entering the data. Describe suspicious data, if any.

5. STAGE 4: Analyzing your data:

Now that we have calculated the means for each region and visualized the data, we
wish to test whether it is likely that average leaf date differs between North and
South for our defined population. To do this, we need some more concepts.

Box 3: How can we use our sample to test whether mean leaf date of North and
South differs in our population (e.g., the UK)? Randomization test

We are interested in whether there is a systematic difference in leaf date between
beech trees in the north vs. south UK. However, it is possible for our samples to
suggest that the two regions differ in leaf date, just due to random chance. Here’s a
simple example.

Consider a population with the following leaf dates of North and South regions:

North leaf date: 100 92 96 124 107 128 110 113 120 108
South leaf date: 109 110 109 128 98 115 112 113 103 101

Note that, on average, there is no difference between the North and South leaf dates
in this imaginary population (mean = 109.8). However, if you randomly sampled a
few (say, 3) of each North and South beech trees from this population, would the
North and South averages be very similar? (Try it!) If the average leaf dates are
basically equal in our pretend population, why would the averages of your samples
not be almost identical, as well?
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Answer:

So here’s the important question: How can we use our samples to determine
whether it is likely that North and South leaf dates are actually different in the larger
population (i.e., that (mean North leaf date - mean South leaf date) # 0 in the
population)? Or, another way of asking this is to say, “Do North and South beech
trees actually come from different “populations” that have different mean leaf
dates?”

We can address this question by recognizing that, if there really is no difference
between North and South beech trees in the population, then adding the label of
‘North’ or ‘South’ to a datapoint is meaningless (because there is no difference, on
average, between North and South beech trees). This means that we can do the
following to test whether mean leaf date of North trees differs from that of South
trees:

1. Randomize (i.e., randomly shuffle) our measurements with respect to whether
they belong to a North versus South;

2. Calculate the difference between North and South average leaf dates for the
randomized data;

3. Compare the difference between average North and South leaf date (i.e., mean
North leaf date - mean South leaf date) from the randomized data to that from the
original (non-randomized) data (i.e., the mean North leaf date- mean South leaf date
of the non-randomized data): if they are similar, then we might conclude that North
and South average leaf dates do not differ in the true population. On the other hand,
if they are quite different, then we might conclude that leaf dates likely differ
between the regions in the true population;

Before continuing, absorb what was just outlined in 1-3 of this Box. Ask yourself,
“How can we use this to determine whether it is likely that North and South leaf
dates are actually different in the larger population?” Keep in mind (hint!) that we
have computers at our disposal, so we could perform steps 1-3 many times. (If we
did do this, how could we interpret the results?) Think about this on your own for a
minute or two, and then. continue reading (cont’d next page)!

Continue when you have finished thinking about 1-3 in this Box...
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4. So, how do we determine whether the randomized and non-randomized
differences are ‘quite different’? Here’s how: we do steps 1 and 2 many times to
create a distribution of differences in mean leaf date from randomized data. This
distribution tells us what to expect as a ‘typical’ difference between North and South
when there actually is no difference between North and South mean leaf dates in the
true population. We can then compare our result from non-randomized data to this
distribution to see how typical (or atypical) our difference is.

We will now use this approach with our data. This is called a ‘randomization test’.

We will now follow the arguments in Box 3 to implement a ‘randomization test’ on
our data. We can divvy up the work of randomizing among all the students in the
practical, and we’ll then work with the results of our shared effort. (Alternatively,
we can work with results [ prepared for you (diff.csv) following the exact
instructions, below.)

5.1 Randomize the data with respect to region. We can do this with the
following command, placing the randomized data in a new column;

data.ordered$rand1 <- sample(data.ordered[,"day.of.obs"], nrow(data. ordered),
replace = FALSE)

How does this command work?

a) We're using the function, sample(), which randomly samples data from a
column and places it in a new object. The first specification that we made
within the sample() function indicates which data will be sampled from;
we told R to sample from data.ordered],"day.of.obs "]: the sorted
dataframe, using the column named day.of.obs (note that day.of.obs is on
the right of the comma within the [ ]’s). We could have instead used the
column number associated with the column, “day.of.obs” (e.g.,
data.ordered|,5], if “day.of.obs” is in the fifth column), but it is wiser to use
the column name to avoid accidentally using the wrong column number.

b) The second entry within sample() tells the function how many numbers to
draw. We want to draw as many numbers as there are rows in our
dataframe (i.e., we want to shuffle all of the data); we coded this explicitly
by using the function nrow(), which counts and indicates the number of
rows in a dataframe.

c) The third command within sample(), replace = FALSE, tells sample() that,
once a number has been randomly selected, it will not be available to
select again. For example, if data.ordered|,"day.of.obs "] had 200 numbers
to randomly choose from at the start, there would only be 199 numbers to
choose from after the first number was randomly selected. After the next
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number was selected, only 198 would remain, and so on. This method of
random sampling is called “sampling without replacement”. In
contrast, if we had said “replace = TRUE”, sample() would pick from a pool
of all 200 samples every time.

d) The output of sample() is a vector of randomly selected numbers, which
we have placed into a new column of data.ordered, called rand1 (short for
“random 1”; but you can call your column something else if you wish).
Overall, these commands have the effect of randomly shuffling the
numbers in data.ordered],"day.of.obs "], into a new column of
data.ordered, called rand1.

When you perform this command, be certain to use the ordered dataframe.

5.2 Calculate the mean leaf date of North beech trees for this
randomized data. Use the same approach as used above, where you first
check which rows contain data from North trees. For example, if North
data lie in rows 1 to 17, then the randomized data for North lie here:

data.ordered[1:17,"rand1"]

Again, we've named the column we wish to analyze, as this is the best way to
ensure that we use the correct column.

Hence, we can find the mean of these data with:
mean(data.ordered[1:17,"rand1"])

5.3 Now calculate the mean leaf date of the randomized data for South
trees.

5.4 Calculate the difference between these means for randomized data,
by subtracting the mean for one region from the other (e.g., Mean
North randomized data - Mean South randomized data).

We don’t mind which mean is subtracted from which, because we did not
hypothesize whether average North leaf dates are larger (or smaller) than
Soth; we only asked whether they were different from each other (in either
direction). (See Box 6 for more on this topic.) As a result, we can use the
absolute value of the difference between means for our analyses because the
absolute value only reflects the magnitude of the difference.

5.4 Record this absolute value of the difference between the mean North
and South leaf date for randomized data. In other words, if the
difference you calculated, directly above, was -5.4, then just record 5.4
(i.e., drop the minus sign). If the difference was 3.6, then record 3.6 (the
difference was already positive).
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Absolute value of the difference between the first pair of means:

5.5 Repeat steps 1-5 four more times.

Absolute value of the difference between the second pair of means:

Absolute value of the difference between the third pair of means:

Absolute value of the difference between the fourth pair of means:

Absolute value of the difference between the fifth pair of means:

5.6 You should now have 5 differences between the North and South leaf
dates for randomized data. When running this workshop ‘in person’, each
student in the class would have calculated ‘differences’ exactly like you
did and we would pool everyone’s data together. When doing this
workshop online you can find results from 200 randomization in the file,
diff.csv.

5.7 Import these data in the file diff.csv as you did with the original dataset.
This file contains 200 differences between mean North and South leaf

date, based on randomized data.

5.8 Plot the data in this file using a histogram, and then draw it here:



15

Box 4: What does this histogram represent?

Think about what this histogram represents. Recall how we made this histogram:
we made it by randomly assigning leaf dates to North and South beech trees that
were drawn from our original data. Then, because we're interested in whether their
means differ, we calculated the difference between the North and South means for
these randomized data. As a result, this plot shows the distribution of differences
between mean North and South leaf dates that can arise due to chance, when
sampling from a population with no difference between North and South beech
tress, on average. (We can say that there is no difference with certainty because we
assigned the measurements randomly with respect to region (“North.South.UK)).
This is what is referred to as a Null Distribution: more formally, the Null
distribution is the probability distribution of a test statistic when the Null
hypothesis is true; in our case, our test statistic is the difference between the mean
leaf date of North and South beech trees (think: what was our Null hypothesis, and
how does it relate the Null distribution?).

How does the Null distribution help us determine whether average North and South
leaf dates likely differ in the population? We can compare our measure of this
difference from our sample against the null distribution, and ask where our
observed difference lies within this distribution. Recall that the Null distribution
tells us what kind of difference we might expect to find between mean North and
South leaf dates just due to chance, when the Null hypothesis is true (i.e., North and
South mean leaf dates do not differ in the population). Because we used the absolute
value of the random differences, this Null distribution should look, roughly, like a
tear-drop, with the highest region on the left, and a long tail (where the height of the
distribution shrinks) towards the right. The highest region corresponds to North-
South differences (on the x-axis) that occur most commonly due to chance, whereas
the lower tail indicates North-South differences that occur more rarely by chance.
Hence, if you find the location of your observed difference between North and South
average leaf dates on the x-axis, and find that it lies in the tall region of the
distribution, corresponding to the values that are most frequently observed, then
this suggests that our observed difference is typical of results that could arise by
chance when sampling from a population with no average difference between North
and South leaf dates (i.e.,, many North-South differences of this size occur by chance).
On the other hand, if you find that our observed difference occurs on the x-axis in the
shorter part of the distribution, corresponding to values that are rarely observed by
chance (i.e., in distribution’s tail), then it is less likely that our observed difference
between North and South arose by chance. In other words, this latter case would
suggest the difference that we observed between North and South only occurs rarely
by chance when the Null hypothesis is true.

5.9 What are the most common values in this histogram?
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5.10 Compare your original, observed difference between North and South to
the null distribution visually. In other words, find where our observed
difference lies in the Null distribution

Does the observed difference lie in one of the ends, or more towards the
middle of the Null distribution?

Do you think this means that our observed difference is ‘typical’ of
random differences, or not?

5.11 We'll now compare our observed difference to the Null Distribution in
a more precise manner. To do this, we will sort all the values of
differences, and we can then read off, where our value lies in relation to
these. We can then determine the proportion of values that is above our
observed test statistic (observed difference North and South).

Sort the distribution of differences between North and South means based on
randomized data, and store the sorted data into a new object. For example, if
you called the dataframe with these differences, ‘diff’, and if the column that
holds the data is called ‘diff.abs’, you can sort the data like this:

sorted.diff <- sort(diff[,"diff.abs"])

As you might guess, the function, sort(), sorts the data vector in ascending
order (this is the default option). Note, that we used order() for ordering a
dataframe, and sort() for ordering a single column in a dataframe (i.e. a
vector).

Now, look at the sorted data. For example, if the sorted data are in an object
called, sorted.diff, simply type

sorted.diff

Where in this distribution does your observed difference between North and
South leaf dates means lie? Specifically, how may data points lie between the
position of your observed difference and the end of the distribution with the
highest numbers (i.e., the right-hand end)? Count this number of data points.
For example, if your observed difference was 5.2 and the right end of the
distribution from the randomizations looked like this:

” 0.8 1.2 1.6 2.5 3.1 4.2 5.5 5.6
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...then two data points would lie between your observed difference and the
end of the distribution.

Record the number of data points that lie between the observed
difference and the end of the Null distribution:

Now, determine how many data points are in the dataset of differences
between randomized North and South leaf date means. Recall that the
function length() determines the number of observations in an vector. (If you
are using the provided file, diff.csv, this file has 200 observations.)

Record the number of data points in the dataset of differences:

Now, we can ask, “what fraction of the Null Distribution is more extreme than
my observed value?”. For example, if, as illustrated above, we had 2
observations that lay between our observed difference and the end of the
distribution, and if there were 225 data points in the Null Distribution, then
the proportion of the Null distribution that lies beyond our observed
difference equals 2/225 = 0.00889. This means that only about 0.9% of the
Null distribution lies beyond our observed value.

Calculate the proportion of the Null distribution that lies beyond your
observed difference. If your observed difference between North and South
lies beyond all values in the Null Distribution (i.e., if none of the values in the
Null Distribution are greater than your observed difference), then see Box 5.

Record this proportion:

Box 5: P-value

The proportion of the Null distribution that lies beyond your observed difference
gives the probability of observing the data (or data with an even more extreme
difference) due to random chance when the Null hypothesis is true. This is called a p-
value. How does the p-value help us?

Interpreting p-values

For many decades, standard practice has been to determine whether less than 5%
of the Null distribution is more extreme than an observed test statistic (i.e., p < 0.05).
When p < 0.05, convention has been to conclude that the observed difference was
unlikely to have arisen by chance if the Null hypothesis was true; this situation has
been termed, ‘statistical significance’. In this case, we would reject the Null
hypothesis and we accept the Alternate hypothesis. (Think: What were our Null and
Alternative hypotheses?) Alternatively, if more than 5% of the Null Distribution is
more extreme than our observed result (i.e., p > 0.05), then we would fail to reject
the Null hypothesis because we lack sufficient evidence to reject it (‘statistical non-
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significance’). (Note that we do not accept the Null hypothesis - we only fail to reject
it.)

Hence, if we followed this tradition to interpret the results in our workshop,
we would compare the observed difference between North and South to the
Null distribution and can ask whether less than 5% of the Null distribution lies
beyond our observed difference in the right-hand tail (i.e., p < 0.05).

This tradition is now poised to change. As of 2019, the American Statistical
Association advises to abandon this concept of ‘statistical significance’. Instead, we
should interpret p-values along a ‘sliding scale’, where small p-values constitute
stronger evidence to reject a Null hypothesis and larger p-values provide weaker
evidence to reject a Null hypothesis. So, how big or small should a p-value be to
provide strong vs. weak evidence to reject a Null hypothesis?

Benjamin et al. (2018; Nature Human Behaviour) provide some insight to interpret
p-values. They suggest that p-values around 0.005 (not 0.05) and smaller constitute
‘substantial’ to ‘strong’ evidence to reject a Null hypothesis. They also argue that p-
values near 0.05 provide relatively weak evidence to reject a Null hypothesis. Given
these insights, here as some suggestions:

- p-values around 0.005 provide ‘substantial’ to ‘strong’ evidence to reject the Null
hypothesis; it follows that p < 0.005 provides even stronger evidence to reject the
Null hypothesis.

- p-values between 0.005 and 0.05 (approximately) provide ‘suggestive’ or
‘moderate’ evidence to reject the Null hypothesis.

- To emphasize this suggestion, immediately above, we can say that p-values around
0.05 provide ‘moderate’ or ‘suggestive’ evidence to reject the Null hypothesis.

- p-values notably larger than 0.05 provide weak evidence to reject the Null
hypothesis.

To summarize, the proportion of the Null distribution that lies beyond our observed
test statistic is called the p-value. In other words, the p-value represents the
probability (given that all assumptions of a test are met) of observing the data or
getting a more extreme difference than the one we observed when the Null
hypothesis is true. Tradition has said that, if this probability is smaller than a
specified threshold (usually, 0.05), then we would say that it is unlikely that our
observed difference arose by chance, and we reject the Null Hypothesis and accept
the Alternate Hypothesis. Statisticians and researchers, including biologists, now
suggest that we abandon this tradition and interpret p-values along a sliding scale.
Why do statisticians and researchers suggest we abandon the concept of statistical
significance? The reasons lie beyond this workshop. But we provide resources,
below, for you to learn more if you are interested.
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Some technical points on p-values

If an observed test statistic lies beyond all values in a Null distribution created by
randomization then we might, initially, conclude that the p-value equals zero.
However, it is impossible for a p-value to equal zero: i.e., there is always some (non-
zero) possibility that our test statistic (or a more extreme one) could arise by
random chance. In this case how do we calculate a p-value? The answer is that we
cannot calculate the p-value (exactly). Instead, we can determine the range of
possible p-values consistent with our results. For example, consider the file
diff.csv: this file contains 200 differences between in mean (randomized) leaf date
for North vs. South beech trees. If our observed difference between mean leaf date
of North vs. South is greater than all 200 values in diff.csv, then we know our p-value
would be smaller than 1/200; (1/200 = 0.005) i.e., we know p < 0.005. We would
report this inequality in our results.

In today’s case we only looked at the proportion of the Null distribution that lay to
the right of our observed North-South difference (i.e., we did not consider the
proportion to the left). Why did we do this? The answer has to do with the fact that
we used the absolute value of differences: i.e., we only allowed differences between
North and South to be positive. Therefore, if we wish to determine the proportion of
the Null distribution that lies beyond our test statistic, we focus attention to the right
of our test statisticc. When we do so, we're formally testing whether our observed
difference is greater than 95% of the differences that arose by chance when the Null
hypothesis is true.

NOTE: Depending on the statistical test that you use in the future, the p-value that
you use will derive from either one end or from both ends of the Null distribution

that your test uses. In other words, not all statistical tests use p-values from only

one end of the Null distribution, as we used today.

More on ‘abandoning’ statistical significance:

Amrhein et al (2019) ‘Scientists rise up against statistical significance’: Nature 567:
305-307

Benjamin et al (2018) ‘Redefine statistical significance’; Nature Human Behaviour 2:
6-10

Wasserstein et al (2019) ‘Moving to a world beyond “p < 0.05”’; The American
Statistician 73: 1-19

Some videos:

Crispin Jordan: ‘Statistical Significance vs. Effect size’ :
https://media.ed.ac.uk/media/Statistical%20Significance%20vs.%20Effect%20Size/1_lpuzgxmi
Crispin Jordan: ‘Statistical vs. Biological significance’:
https://media.ed.ac.uk/media/Statistical%20vs.%20Biological%20significance/1_0ongbnwd




20

6. STAGE 6: Interpreting your results:

What do you conclude about your data? Is there evidence to suggest that North and
South average leaf dates differ for beech in the UK?

Answer:

NOTE: Even if we conclude that North and South mean leaf dates differ, on average,
there is always a chance that our conclusion is wrong. In particular, we must keep in
mind that there is always a chance for our results to arise by chance, even if the
chance is small. This is not bad - this is simply a part of the scientific process. To be
more certain in our conclusions, we must repeat the experiment, or find other
supporting evidence in other studies. If this supporting evidence arises, then we
gain confidence that we have the correct answer. We must be cautious when
interpreting the results from a single study.
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Function What it does Context discussed Page

1s() Lists the objects in your | Managing objects 3
workspace

rm() Removes an object from | Managing objects 3
a specified environment

help() Provides explanation of | Getting Help 4
a function named within
the ()’s

help.search() Allows search for help Getting Help 4
given a keyword

q() QuitR Turning R off 5

c() Combine values into a Creating a vector 7
vector or list

mode() Reveals the type of data | Data types 9
in an object

as.character() Converts data to Data types 9
character type

length() Determines the number | Calculations with vectors | 10
of entries in an object

max() Determines the Calculations with vectors | 10
maximum value among
data specified

min() Determines the Calculations with vectors | 10
minimum value among
data specified

sum() Provides sum of Calculations with vectors | 10
specified data

mean() Determines the mean of | Calculations with vectors | 11
specified data

read.table() Reads a table to be Getting data into R 16
imported to R

hist() Creates a histogram Plotting data 24

plot() Creates a scatterplot Plotting data 26

which() Command that allows Choosing subset of data 26
user to choose data
“which” meet specified
conditions

order() Sorts a dataframe by Computer Practical 7
values in a column

sample() Draws random samples | Computer Practical 12
from a list of specified
values

nrow() Returns the number of | Computer Practical 12
rows

sort() Sorts a vector Computer Practical 16




